diff --git a/SAFT/main.py b/SAFT/main.py new file mode 100644 index 0000000..a9811b6 --- /dev/null +++ b/SAFT/main.py @@ -0,0 +1,23 @@ +from util import * +from algo import * +""" +The A value of the algorithm is the sound speed divided by the frequency or 0.059 mm, which gives about 17 samples per mm. +The B value considered for this results 0,35 mm which corresponds the resolution of our transducer x-y scanning driving system. +Dans le cas de notre etude avec le dataset Shear_transform, nous avons des fréquences nominales de 55 kHz (ondes de cisaillement) +measurement was performed using a sampling rate of 2 MHz +""" +if __name__ == "__main__": + dossier = "Dataset/Shear_transform" + fichiers_selectionnes = ['Shear_x001-x101_y{:03d}_Rot00_transform.csv'.format(i) for i in range(10, 62)] + + pre_volume = np.array(lire_fichier_csv(dossier, fichiers_selectionnes)) + volume = pre_volume[:, ::4, :] + + image = volume[0, :, :] + + win = 10 + A = 1 + B = 1 + + # Application de l'algorithme SAFT + result = saft_algorithm(image, win, A, B) \ No newline at end of file diff --git a/SAFT/util.py b/SAFT/util.py new file mode 100644 index 0000000..d503e85 --- /dev/null +++ b/SAFT/util.py @@ -0,0 +1,24 @@ +import csv +import os + +def lire_un_fichier_csv(data): + tableau_2D = [] + tab = [] + with open(data, "r") as csv_file: + csv_reader = csv.reader(csv_file, delimiter=',') + for ligne in csv_reader: + tableau_2D.append(ligne) + for i in range(len(tableau_2D[0])): + ligne = [] + for j in range(len(tableau_2D)): + ligne.append(float(tableau_2D[j][i])) + tab.append(ligne) + return tab + +def lire_fichier_csv(data,fichier): + resultat=[] + tableau=[] + for i in fichier: + tableau=lire_un_fichier_csv(os.path.join(data,i)) + resultat.append(tableau) + return resultat \ No newline at end of file