Add files via upload

This commit is contained in:
yalmansour1998
2024-06-14 10:01:53 +02:00
committed by GitHub
parent d988de46b0
commit 55e3b5361c
2 changed files with 174 additions and 153 deletions

View File

@ -12,17 +12,13 @@ from Bscan_Cscan_trait import *
dash.register_page(
__name__,
path="/ascan",
title="A-Scan filters",
name="A-Scan filters",
description="Apply filters on the A-Scan",
__name__, path="/ascan", title="A-Scan filters", name="A-Scan filters"
)
# on définit le dossier et les fichiers à lire
dossier = "Dataset/Shear_Wave_Rot00_CSV_Data"
fichiers_selectionnes = [
"Shear_x001-x101_y{:03d}_Rot00.csv".format(i) for i in range(10, 13)
"Shear_x001-x101_y{:03d}_Rot00.csv".format(i) for i in range(10, 20)
]
# on lit les fichiers et on les met dans un tableau
@ -30,7 +26,7 @@ pre_volume = np.array(lire_fichier_csv(dossier, fichiers_selectionnes))
volume = pre_volume[:, :, :]
data_traits = volume
dim_x, dim_y, dim_z = volume.shape
click=None
X, Y, Z = np.mgrid[0:dim_x, 0:dim_y, 0:dim_z]
# on définit le thème de l'application
pio.templates.default = "plotly_dark"
@ -54,20 +50,20 @@ layout = html.Div(
dbc.Select(
id="select-ascan-filter1",
options=[
{"label": "Transformer du Hilbert", "value": "1"},
{"label": "transformer du Hilbert", "value": "1"},
],
value=1,
style={"margin-bottom": "15px"},
),
],
width=3,
width=2,
),
dbc.Col(
[
dbc.Select(
id="select-ascan-filter2",
options=[
{"label": "No filter ", "value": "2"},
{"label": "sans filtre ", "value": "2"},
{"label": "filtre passe bas ", "value": "3"},
{"label": "filtre de moyenne mobile", "value": "4"},
{"label": "filtre adaptatif (wiener)", "value": "5"},
@ -84,14 +80,14 @@ layout = html.Div(
style={"margin-bottom": "15px"},
),
],
width=3,
width=2,
),
dbc.Col(
[
dbc.Select(
id="select-ascan-filter3",
options=[
{"label": "No filter ", "value": "2"},
{"label": "sans filtre ", "value": "2"},
{"label": "filtre passe bas ", "value": "3"},
{"label": "filtre de moyenne mobile", "value": "4"},
{"label": "filtre adaptatif (wiener)", "value": "5"},
@ -108,41 +104,50 @@ layout = html.Div(
style={"margin-bottom": "15px"},
),
],
width=3,
width=2,
),
dbc.Col(
[
html.Div(
[
dbc.Label(
"Apply selection on all data",
style={"margin": "auto 0"},
),
dbc.Button(
id="button-validate-filter",
children=dbc.Spinner(
html.Div("Apply", id="loading"),
show_initially=False,
),
color="primary",
),
],
style={
"justifyContent": "space-between",
"display": "flex",
},
dbc.Label(
"apply the filters",
style={"marginRight": "5px"},
),
dbc.Button(
id="button-validate-filter",
children=dbc.Spinner(
html.Div("Valider", id="loading"), show_initially=False
),
color="primary",
style={"marginBottom": "15px"},
),
],
width=3,
width=2,
),
dbc.Col(
[
dbc.Label(
"Save data",
style={"marginRight": "5px"},
),
dbc.Button(
id="button-save-data",
children=dbc.Spinner(
html.Div("save", id="save"), show_initially=False
),
color="primary",
style={"marginBottom": "15px"},
),
],
width=2,
),
]
),
dbc.Row(
[
dbc.Col(
html.B(" 1st filter settings "),
[html.Br(), html.B(" paramètre du 1er filtre ")],
width=2,
style={"textAlign": "center", "padding": "3.5vh"},
style={"textAlign": "center"},
),
dbc.Col(
[
@ -151,7 +156,7 @@ layout = html.Div(
id="input-ascan-solo-fs",
type="number",
placeholder="Fs",
value=1,
value=100,
step=0.1,
),
],
@ -159,11 +164,11 @@ layout = html.Div(
),
dbc.Col(
[
dbc.Label("Cut Off ", html_for="cut off"),
dbc.Label("cut off ", html_for="cut off"),
dbc.Input(
id="input-ascan-solo-cutoff",
type="number",
placeholder="Cut Off",
placeholder="cut_off",
value=1,
step=0.1,
),
@ -172,11 +177,11 @@ layout = html.Div(
),
dbc.Col(
[
dbc.Label("Order ", html_for="order"),
dbc.Label("order ", html_for="order"),
dbc.Input(
id="input-ascan-solo-order",
type="number",
placeholder="Order",
placeholder="order",
value=1,
step=1,
),
@ -185,11 +190,11 @@ layout = html.Div(
),
dbc.Col(
[
dbc.Label("Window size ", html_for="window size"),
dbc.Label("window size ", html_for="window size"),
dbc.Input(
id="input-ascan-solo-windowsize",
type="number",
placeholder="Window_size",
placeholder="window_size",
value=1,
step=1,
),
@ -197,9 +202,9 @@ layout = html.Div(
width=1,
),
dbc.Col(
html.B(" 2nd filter settings "),
[html.Br(), html.B(" paramètre du 2e filtre ")],
width=2,
style={"textAlign": "center", "padding": "3.5vh"},
style={"textAlign": "center"},
),
dbc.Col(
[
@ -208,7 +213,7 @@ layout = html.Div(
id="input-ascan-solo-fs-2",
type="number",
placeholder="Fs",
value=1,
value=100,
step=0.1,
),
],
@ -216,11 +221,11 @@ layout = html.Div(
),
dbc.Col(
[
dbc.Label("Cut Off ", html_for="cut off"),
dbc.Label("cut off ", html_for="cut off"),
dbc.Input(
id="input-ascan-solo-cutoff-2",
type="number",
placeholder="Cut Off",
placeholder="cut_off",
value=1,
step=0.1,
),
@ -229,11 +234,11 @@ layout = html.Div(
),
dbc.Col(
[
dbc.Label("Order ", html_for="order"),
dbc.Label("order ", html_for="order"),
dbc.Input(
id="input-ascan-solo-order-2",
type="number",
placeholder="Order",
placeholder="order",
value=1,
step=1,
),
@ -242,11 +247,11 @@ layout = html.Div(
),
dbc.Col(
[
dbc.Label("Window size ", html_for="window size"),
dbc.Label("window size ", html_for="window size"),
dbc.Input(
id="input-ascan-solo-windowsize-2",
type="number",
placeholder="Window_size",
placeholder="window_size",
value=1,
step=1,
),
@ -283,7 +288,7 @@ layout = html.Div(
),
]
),
dbc.Label("X"),
dbc.Label("x"),
dcc.Slider(
id="layer-slider-ascan-solo-x",
min=1,
@ -294,7 +299,7 @@ layout = html.Div(
str(i): str(i) for i in range(1, dim_z + 1, max(1, int(dim_z / 20)))
},
),
dbc.Label("Y"),
dbc.Label("y"),
dcc.Slider(
id="layer-slider-ascan-solo-y",
min=1,
@ -305,7 +310,7 @@ layout = html.Div(
str(i): str(i) for i in range(1, dim_x + 1, max(1, int(dim_x / 20)))
},
),
dbc.Label("Z"),
dbc.Label("z"),
dcc.RangeSlider(
id="layer-slider-ascan-solo-z",
min=1,
@ -316,12 +321,10 @@ layout = html.Div(
str(i): str(i) for i in range(1, dim_y + 1, max(1, int(dim_y / 20)))
},
),
html.Div(id="loading-fullscreen"),
],
style={"padding": "20px"},
)
@callback(
Output("store-filters", "data"),
[
@ -416,13 +419,65 @@ def update_filter_values(select_filtre_1, select_filtre_2):
]
@callback(
Output("loading", "children"),
Input("button-validate-filter", "n_clicks"),
[
State("select-ascan-filter1", "value"),
State("select-ascan-filter2", "value"),
State("select-ascan-filter3", "value"),
State("input-ascan-solo-fs", "value"),
State("input-ascan-solo-cutoff", "value"),
State("input-ascan-solo-order", "value"),
State("input-ascan-solo-windowsize", "value"),
State("input-ascan-solo-fs-2", "value"),
State("input-ascan-solo-cutoff-2", "value"),
State("input-ascan-solo-order-2", "value"),
State("input-ascan-solo-windowsize-2", "value"),
]
)
def load_button(n_clicks,
selec_transforme_hilbert,
select_filtre_1,select_filtre_2,
fs_filtre_1,cutoff_filtre_1,
order_filtre_1,windowsize_filtre_1,
fs_filtre_2,cutoff_filtre_2,order_filtre_2,windowsize_filtre_2,
):
bouton = "Valider"
global data_traits,click
if n_clicks != click:
data_traits=Cscant(data_input=data_traits,
sel1=int(selec_transforme_hilbert),sel2=int(select_filtre_1),
sel3=int(select_filtre_2),
fs_1=int(fs_filtre_1),cut_off_1=float(cutoff_filtre_1),
order_1=int(order_filtre_1),window_size_1=int(windowsize_filtre_1),
fs_2=int(fs_filtre_2),cut_off_2=float(cutoff_filtre_2),
order_2=int(order_filtre_2),window_size2=int(windowsize_filtre_2))
bouton = "Valider"
click=n_clicks
return bouton
@callback(
Output("save", "children"),
Input("button-save-data","n_clicks"),
)
def save_data(n_clicks):
bouton = "save"
global data_traits
if n_clicks!=None:
np.save('Dataset/saves/datat.npy',data_traits)
bouton = "save"
return bouton
# callback to update the heatmap
@callback(
[
Output("heatmap-ascan-solo", "figure"),
Output("heatmap-bscan-solo", "figure"),
Output("heatmap-fft-solo", "figure"),
Output("loading", "children"),
],
[
Input("layer-slider-ascan-solo-x", "value"),
@ -442,7 +497,7 @@ def update_filter_values(select_filtre_1, select_filtre_2):
State("input-ascan-solo-cutoff-2", "value"),
State("input-ascan-solo-order-2", "value"),
State("input-ascan-solo-windowsize-2", "value"),
],
]
)
def update_heatmap_ascan(
select_ascan_x,
@ -462,6 +517,7 @@ def update_heatmap_ascan(
windowsize_filtre_2,
):
# TODO: implement the filter
print("debut du traitement")
data_avec_traitement = volume[
int(select_ascan_y) - 1,
@ -498,23 +554,7 @@ def update_heatmap_ascan(
int(windowsize_filtre_2),
)
print("fin du traitement")
bouton = "Apply"
if n_clicks != None:
data_traits = Cscant(
volume,
int(selec_transforme_hilbert),
int(select_filtre_1),
int(select_filtre_2),
float(fs_filtre_1),
float(cutoff_filtre_1),
int(order_filtre_1),
int(windowsize_filtre_1),
float(fs_filtre_2),
float(cutoff_filtre_2),
int(order_filtre_2),
int(windowsize_filtre_2),
)
bouton = "Apply"
fig = px.line(title="A-scan")
new_trace = go.Scatter(y=data_avec_traitement, mode="lines", name=" Ascan trait ")
fig.add_trace(new_trace)
@ -524,21 +564,10 @@ def update_heatmap_ascan(
fig.add_trace(new_trace)
fig.update_layout(xaxis_title="indix", yaxis_title="amplitude")
data_bscan = Bscant(
volume[select_ascan_y - 1, select_ascan_z[0] : select_ascan_z[1], :],
int(selec_transforme_hilbert),
int(select_filtre_1),
int(select_filtre_2),
float(fs_filtre_1),
float(cutoff_filtre_1),
int(order_filtre_1),
int(windowsize_filtre_1),
float(fs_filtre_2),
float(cutoff_filtre_2),
int(order_filtre_2),
int(windowsize_filtre_2),
)
data_bscan=Bscant(volume[select_ascan_y - 1, select_ascan_z[0] : select_ascan_z[1], :],int(selec_transforme_hilbert),int(select_filtre_1),int(select_filtre_2),float(fs_filtre_1),
float(cutoff_filtre_1),int(order_filtre_1),int(windowsize_filtre_1),float(fs_filtre_2),float(cutoff_filtre_2),int(order_filtre_2),int(windowsize_filtre_2),)
fig2 = px.imshow(
data_bscan,
color_continuous_scale="Jet",
@ -549,14 +578,14 @@ def update_heatmap_ascan(
data_sans_traitement_fft = np.fft.fft(
volume[
int(select_ascan_y) - 1,
select_ascan_z[0] : select_ascan_z[1],
int(select_ascan_z[0]) : int(select_ascan_z[1]),
int(select_ascan_x) - 1,
]
)
fig3 = px.line(title="FFT")
trace3 = go.Scatter(y=np.abs(data_sans_traitement_fft), mode="lines", name=" FFT ")
trace3 = go.Scatter(y=np.abs(data_sans_traitement_fft[int(select_ascan_z[0]) :int(int(select_ascan_z[1])/2)]), mode="lines", name=" FFT ")
fig3.add_trace(trace3)
fig3.update_layout(
xaxis_title="FFT indix", yaxis_title="FFT of signal (Mangnitude)"
)
return [fig, fig2, fig3, bouton]
return [fig, fig2, fig3]

View File

@ -6,29 +6,20 @@ import numpy as np
import plotly.express as px
import plotly.io as pio
from util import *
from selection_filtre import *
from os.path import join
import diskcache
from pages.ascan import data_traits, pre_volume
dash.register_page(__name__, path="/", description="The home page of the web app")
# on définit le dossier et les fichiers à lire
dossier = "Dataset/Shear_transform"
fichiers_selectionnes = [
"Shear_x001-x101_y{:03d}_Rot00_transform.csv".format(i) for i in range(10, 14)
]
cache = diskcache.Cache("./cache")
background_callback_manager = DiskcacheManager(cache)
# on charge le fichier numpy
# fichiers = np.load("Dataset/npy/export.npy")
dash.register_page(__name__, path="/")
# valeurs d'échantillonage
echantillonage_x = 1
echantillonage_y = 32
echantillonage_z = 1
pre_volume = np.array(lire_fichier_csv(dossier, fichiers_selectionnes))
volume = pre_volume[::echantillonage_x, ::echantillonage_y, ::echantillonage_z]
dim_x, dim_y, dim_z = volume.shape
@ -263,7 +254,7 @@ Ascan_card = dbc.Fade(
dcc.Slider(
id="layer-slider-ascan-fullscreen",
min=0,
max=dim_x - 1,
max=dim_x,
value=0,
step=1,
marks={
@ -345,7 +336,7 @@ Bscan_card_xy = dbc.Fade(
dcc.Slider(
id="layer-slider-bscan-zx-fullscreen",
min=0,
max=dim_x - 1,
max=dim_x,
value=0,
step=1,
marks={
@ -470,14 +461,18 @@ layout = html.Div(
# on défini les callbacks
# callback pour le plot 3D
@callback(
[Output("3dplot", "figure"), Output("fade-3dplot", "is_in")],
[Output("3dplot", "figure")],
[
Input("iso-slider", "value"),
Input("y-slider", "value"),
Input("store-settings", "data"),
],
[dash.dependencies.State("fade-3dplot", "is_in")],
running=[
(Output("fade-3dplot", "is_in"), False, True),
],
)
### a revoir###
def update_3dplot(iso_value, y_values, settings, is_in):
if settings["use_real_values"]:
y_min, y_max = y_values
@ -508,7 +503,7 @@ def update_3dplot(iso_value, y_values, settings, is_in):
)
)
return [fig, True]
return [fig]
# callback pour le plot 3D en plein écran
@ -516,6 +511,7 @@ def update_3dplot(iso_value, y_values, settings, is_in):
Output("3dplot-fullscreen", "figure"),
[Input("iso-slider-fullscreen", "value"), Input("y-slider-fullscreen", "value")],
)
### à revoir ###
def update_3dplot_fullscreen(iso_value, y_values):
y_min, y_max = y_values
selected_volume = volume[0:dim_x, int(y_min) : int(y_max), 0:dim_z]
@ -544,15 +540,18 @@ def update_3dplot_fullscreen(iso_value, y_values):
# callback pour le A-scan
@callback(
[Output("heatmap-ascan", "figure"), Output("fade-ascan", "is_in")],
[Output("heatmap-ascan", "figure")],
[Input("layer-slider-bscan-zx", "value"), Input("layer-slider-bscan-xy", "value")],
[dash.dependencies.State("fade-ascan", "is_in")],
running=[
(Output("fade-ascan", "is_in"), False, True),
],
prevent_initial_call=True,
)
def update_heatmap_ascan(layer, layer1, is_in):
fig = px.line(y=volume[layer - 1, :, layer1], title="A-scan")
return [fig, True]
return [fig]
# callback pour le A-scan en plein écran
@ -570,10 +569,12 @@ def update_heatmap_ascan_fullscreen(layer):
[
Output("heatmap-bscan-zx", "figure"),
Output("store-bscan-zx-layer", "data"),
Output("fade-bscan-xy", "is_in"),
],
[Input("layer-slider-bscan-zx", "value")],
[dash.dependencies.State("fade-bscan-zx", "is_in")],
running=[
(Output("fade-bscan-xy", "is_in"), False, True),
],
prevent_initial_call=True,
)
def update_heatmap_bscan_zx(layer, is_in):
@ -584,7 +585,7 @@ def update_heatmap_bscan_zx(layer, is_in):
title="B-scan ZX",
)
return [fig, layer, True]
return [fig, layer]
# callback pour les B-scan ZX en plein écran
@ -605,20 +606,19 @@ def update_heatmap_bscan_zx_fullscreen(layer):
# callback pour les B-scan ZX
@callback(
[
Output("heatmap-bscan-xy", "figure"),
Output("store-bscan-xy-layer", "data"),
Output("fade-bscan-zx", "is_in"),
],
[Output("heatmap-bscan-xy", "figure"), Output("store-bscan-xy-layer", "data")],
[Input("layer-slider-bscan-xy", "value")],
[dash.dependencies.State("fade-bscan-xy", "is_in")],
running=[
(Output("fade-bscan-zx", "is_in"), False, True),
],
prevent_initial_call=True,
)
def update_heatmap_bscan_xy(layer, is_in):
fig = go.Figure(data=go.Heatmap(z=volume[:, :, layer], colorscale="Jet"))
fig.update_layout(title="B-scan XY")
return [fig, layer, True]
return [fig, layer]
# callback pour les B-scan ZX en plein écran
@ -823,7 +823,7 @@ def update_settings(
prevent_initial_call=True,
)
def redef_data(data):
global volume, pre_volume, dim_x, dim_y, dim_z, X, Y, Z
global volume, dim_x, dim_y, dim_z, X, Y, Z
volume = pre_volume[
:: data["echantillonage_x"],
:: data["echantillonage_y"],
@ -852,7 +852,7 @@ def redef_data(data):
"Apply",
]
"""
@callback(
[Input("store-filters", "data"), Input("store-settings", "data")],
)
@ -903,45 +903,37 @@ def apply_filters(data, settings):
:: settings["echantillonage_z"],
]
return None
"""
@callback(
Output("store-files", "data", allow_duplicate=True),
Input("store-files", "data"),
[
State("store-settings", "data"),
State("layer-slider-bscan-zx", "value"),
State("layer-slider-bscan-xy", "value"),
State("iso-slider", "value"),
State("y-slider", "value"),
],
State("store-settings", "data"),
prevent_initial_call=True,
)
def update_files(data, settings, layer_zx, layer_xy, iso, y):
global pre_volume, dim_y
def update_files(data, settings):
global pre_volume, volume, dim_x, dim_y, dim_z, X, Y, Z
if data is None or data == "":
return None
# Charger le nouveau volume
pre_volume = np.load(join("Dataset/saves", data))
redef_data(settings)
update_3dplot(iso, y, settings, False)
update_heatmap_ascan(layer_zx, layer_xy, False)
update_heatmap_bscan_zx(layer_zx, False)
update_heatmap_bscan_xy(layer_xy, False)
print("New volume loaded:", pre_volume.shape)
# Appliquer les nouveaux paramètres d'échantillonnage
volume = pre_volume[
::settings["echantillonage_x"],
::settings["echantillonage_y"],
::settings["echantillonage_z"],
]
dim_x, dim_y, dim_z = volume.shape
X, Y, Z = np.mgrid[0:dim_x, 0:dim_y, 0:dim_z]
print("Volume updated with new dimensions:", volume.shape)
# Mettre à jour les graphiques
update_3dplot(0, [0, dim_y // 2], settings, False)
update_heatmap_ascan(0, 0, False)
update_heatmap_bscan_zx(0, False)
update_heatmap_bscan_xy(0, False)
return None
@callback(
Output("save-toast", "is_open"),
Input("save-save", "n_clicks"),
[
State("save-input", "value"),
State("save-format", "value"),
],
)
def save_data(n_clicks, filename, format):
if n_clicks is None:
return False
if format == "raw":
np.save(join("Dataset/saves", filename), pre_volume)
else:
np.save(join("Dataset/saves", filename), volume)
return True